A retriever that uses two sets of embeddings to perform adaptive retrieval. Based off of the "Matryoshka embeddings: faster OpenAI vector search using Adaptive Retrieval" blog post https://supabase.com/blog/matryoshka-embeddings.

This class performs "Adaptive Retrieval" for searching text embeddings efficiently using the Matryoshka Representation Learning (MRL) technique. It retrieves documents similar to a query embedding in two steps:

First-pass: Uses a lower dimensional sub-vector from the MRL embedding for an initial, fast, but less accurate search.

Second-pass: Re-ranks the top results from the first pass using the full, high-dimensional embedding for higher accuracy.

This code implements MRL embeddings for efficient vector search by combining faster, lower-dimensional initial search with accurate, high-dimensional re-ranking.

Type Parameters

Hierarchy

Constructors

Properties

k: number
largeEmbeddingKey: string = "lc_large_embedding"
largeEmbeddingModel: Embeddings
largeK: number = 8
searchType: "cosine" | "innerProduct" | "euclidean" = "cosine"
smallK: number = 50
vectorStore: Store
callbacks?: Callbacks
filter?: Store["FilterType"]
metadata?: Record<string, unknown>
name?: string
tags?: string[]
verbose?: boolean

Methods

  • Override the default addDocuments method to embed the documents twice, once using the larger embeddings model, and then again using the default embedding model linked to the vector store.

    Parameters

    • documents: DocumentInterface<Record<string, any>>[]

      An array of documents to add to the vector store.

    • Optional options: AddDocumentOptions

      An optional object containing additional options for adding documents.

    Returns Promise<void | string[]>

    A promise that resolves to an array of the document IDs that were added to the vector store.

  • Assigns new fields to the dict output of this runnable. Returns a new runnable.

    Parameters

    • mapping: RunnableMapLike<Record<string, unknown>, Record<string, unknown>>

    Returns Runnable<any, any, RunnableConfig>

  • Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently.

    Parameters

    • inputs: string[]

      Array of inputs to each batch call.

    • Optional options: Partial<RunnableConfig> | Partial<RunnableConfig>[]

      Either a single call options object to apply to each batch call or an array for each call.

    • Optional batchOptions: RunnableBatchOptions & {
          returnExceptions?: false;
      }

    Returns Promise<DocumentInterface<Record<string, any>>[][]>

    An array of RunOutputs, or mixed RunOutputs and errors if batchOptions.returnExceptions is set

  • Parameters

    Returns Promise<(Error | DocumentInterface<Record<string, any>>[])[]>

  • Parameters

    Returns Promise<(Error | DocumentInterface<Record<string, any>>[])[]>

  • Bind arguments to a Runnable, returning a new Runnable.

    Parameters

    Returns Runnable<string, DocumentInterface<Record<string, any>>[], RunnableConfig>

    A new RunnableBinding that, when invoked, will apply the bound args.

  • Parameters

    • Optional suffix: string

    Returns string

  • Main method used to retrieve relevant documents. It takes a query string and an optional configuration object, and returns a promise that resolves to an array of Document objects. This method handles the retrieval process, including starting and ending callbacks, and error handling.

    Parameters

    • query: string

      The query string to retrieve relevant documents for.

    • Optional config: BaseCallbackConfig | Callbacks

      Optional configuration object for the retrieval process.

    Returns Promise<DocumentInterface<Record<string, any>>[]>

    A promise that resolves to an array of Document objects.

  • Parameters

    Returns Promise<DocumentInterface<Record<string, any>>[]>

  • Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input.

    Returns Runnable<string[], DocumentInterface<Record<string, any>>[][], RunnableConfig>

  • Create a new runnable sequence that runs each individual runnable in series, piping the output of one runnable into another runnable or runnable-like.

    Type Parameters

    • NewRunOutput

    Parameters

    • coerceable: RunnableLike<DocumentInterface<Record<string, any>>[], NewRunOutput>

      A runnable, function, or object whose values are functions or runnables.

    Returns Runnable<string, Exclude<NewRunOutput, Error>, RunnableConfig>

    A new runnable sequence.

  • Stream output in chunks.

    Parameters

    Returns Promise<IterableReadableStream<DocumentInterface<Record<string, any>>[]>>

    A readable stream that is also an iterable.

  • Generate a stream of events emitted by the internal steps of the runnable.

    Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.

    A StreamEvent is a dictionary with the following schema:

    • event: string - Event names are of the format: on_[runnable_type]_(start|stream|end).
    • name: string - The name of the runnable that generated the event.
    • run_id: string - Randomly generated ID associated with the given execution of the runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID.
    • tags: string[] - The tags of the runnable that generated the event.
    • metadata: Record<string, any> - The metadata of the runnable that generated the event.
    • data: Record<string, any>

    Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

    event name chunk input output
    on_llm_start [model name] {'input': 'hello'}
    on_llm_stream [model name] 'Hello' OR AIMessageChunk("hello")
    on_llm_end [model name] 'Hello human!'
    on_chain_start format_docs
    on_chain_stream format_docs "hello world!, goodbye world!"
    on_chain_end format_docs [Document(...)] "hello world!, goodbye world!"
    on_tool_start some_tool {"x": 1, "y": "2"}
    on_tool_stream some_tool {"x": 1, "y": "2"}
    on_tool_end some_tool {"x": 1, "y": "2"}
    on_retriever_start [retriever name] {"query": "hello"}
    on_retriever_chunk [retriever name] {documents: [...]}
    on_retriever_end [retriever name] {"query": "hello"} {documents: [...]}
    on_prompt_start [template_name] {"question": "hello"}
    on_prompt_end [template_name] {"question": "hello"} ChatPromptValue(messages: [SystemMessage, ...])

    Parameters

    • input: string
    • options: Partial<RunnableConfig> & {
          version: "v1";
      }
    • Optional streamOptions: Omit<LogStreamCallbackHandlerInput, "autoClose">

    Returns AsyncGenerator<StreamEvent, any, unknown>

  • Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.

    Parameters

    • input: string
    • Optional options: Partial<RunnableConfig>
    • Optional streamOptions: Omit<LogStreamCallbackHandlerInput, "autoClose">

    Returns AsyncGenerator<RunLogPatch, any, unknown>

  • Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.

    Parameters

    • generator: AsyncGenerator<string, any, unknown>
    • options: Partial<RunnableConfig>

    Returns AsyncGenerator<DocumentInterface<Record<string, any>>[], any, unknown>

  • Create a new runnable from the current one that will try invoking other passed fallback runnables if the initial invocation fails.

    Parameters

    • fields: {
          fallbacks: Runnable<string, DocumentInterface<Record<string, any>>[], RunnableConfig>[];
      }
      • fallbacks: Runnable<string, DocumentInterface<Record<string, any>>[], RunnableConfig>[]

        Other runnables to call if the runnable errors.

    Returns RunnableWithFallbacks<string, DocumentInterface<Record<string, any>>[]>

    A new RunnableWithFallbacks.

  • Bind lifecycle listeners to a Runnable, returning a new Runnable. The Run object contains information about the run, including its id, type, input, output, error, startTime, endTime, and any tags or metadata added to the run.

    Parameters

    • params: {
          onEnd?: ((run, config?) => void | Promise<void>);
          onError?: ((run, config?) => void | Promise<void>);
          onStart?: ((run, config?) => void | Promise<void>);
      }

      The object containing the callback functions.

      • Optional onEnd?: ((run, config?) => void | Promise<void>)
          • (run, config?): void | Promise<void>
          • Called after the runnable finishes running, with the Run object.

            Parameters

            Returns void | Promise<void>

      • Optional onError?: ((run, config?) => void | Promise<void>)
          • (run, config?): void | Promise<void>
          • Called if the runnable throws an error, with the Run object.

            Parameters

            Returns void | Promise<void>

      • Optional onStart?: ((run, config?) => void | Promise<void>)
          • (run, config?): void | Promise<void>
          • Called before the runnable starts running, with the Run object.

            Parameters

            Returns void | Promise<void>

    Returns Runnable<string, DocumentInterface<Record<string, any>>[], RunnableConfig>

Generated using TypeDoc